Структура уравнений движения самолета

Информация » Разработка системы автоматического управления углом тангажа легкого самолета » Структура уравнений движения самолета

Страница 1

Движение самолета как твердого тела состоит из двух движений: движения центра масс и движения вокруг центра масс. Поскольку в каждом из этих движений самолет обладает тремя степенями свободы, то в целом его движение характеризуется шестью степенями свободы. Для задания движения в любой момент времени необходимо задать шесть координат как функций времени.

Для определения положения самолета будем применять следующие системы прямоугольных координат (рис.2.1):

неподвижную систему Ox0y0z0, начало которой совпадает с центром масс самолета, ось Oy0 направлена по вертикали, а оси Ox0 и Oz0 горизонтальны и имеют фиксированное направление по отношению к Земле;

связанную систему Ox1y1z1 с началом в центре масс самолета, оси которой направлены по главным осям инерции самолета: ось Ox1 – по продольной оси, ось Oy1 – в плоскости симметрии, ось Oz1 перпендикулярна к плоскости симметрии;

скоростную систему Oxyz с началом в центре масс самолета, ось Ox которой направлена по вектору скорости V, ось Oy – в плоскости симметрии, ось Oz перпендикулярна к плоскости симметрии;

Положение связанной системы Ox1y1z1 по отношению к неподвижной системе Ox0y0z0 характеризуется углами Эйлера: φ – угол крена, ψ – угол рыскания и J - угол тангажа.

Положение вектора воздушной скорости V относительно связанной системы Ox1y1z1 характеризуется углом атаки α и углом скольжения b.

Нередко вместо инерциальной системы координат выбирается система, связанная с Землей. Положение центра масс летательного аппарата в этой системе координат можно характеризовать высотой полета H, боковым отклонением от заданной траектории полета Z и пройденным расстоянием L.

Рис. 2.1 Системы координат

Рассмотрим плоское движение летательного аппарата, при котором вектор скорости центра масс совпадает с плоскостью симметрии. Самолет в скоростной системе координат представлен на рис.2.2.

Рис. 2.2 Самолет в скоростной системе координат

Уравнения продольного движения центра масс самолета в проекции на оси OXa и OYa запишем в виде

(2.1)

(2.2)

Где m – масса;

V – воздушная скорость самолета;

P – сила тяги двигателя;

a – угол атаки;

q – угол наклона вектора скорости к горизонту;

Xa – сила лобового сопротивления;

Ya – аэродинамическая подъемная сила;

G – сила веса.

Обозначим через Mz и Jz соответственно суммарный момент аэродинамических сил, действующих относительно поперечной оси, проходящей через центр масс, и момент инерции относительно той же оси. Уравнение моментов относительно поперечной оси самолета будет:

(2.3)

Если Мшв и Jв – шарнирный момент и момент инерции руля высоты относительно его оси вращения, Мв – управляющий момент, создаваемый системой управления , то уравнение движения руля высоты будет:

(2.4)

В четырех уравнениях (2.1) – (2.4) неизвестными являются пять величин J, q, a, V и dв.

В качестве недостающего пятого уравнения возьмем кинематическое уравнение, связывающее величины J, q и a (см. рис.2.2):

Страницы: 1 2

Другое по теме:

Питание радиоаппаратуры от бортовой сети автомобиля
Подключать радиоаппаратуру непосредственно к аккумулятору нельзя (за исключением тех приборов, которые рассчитаны на это), так как его напряжение может меняться от 10 до 15 В, а переносная аппаратура питается меньшим напряжением. Особенн ...

Электробезопасность
Питание электрооборудования вычислительного центра осуществляется от сети переменного тока напряжением 220В при частоте 50 Гц. Сопротивление изоляции токоведущих частей электроустановок до первого автомата максимальной токовой защиты не м ...

Разработка конструкции стенда
За основу для дальнейшей разработки принимаем стенд ПС-40. Данный стенд предназначен для разборки и сборки коробок передач автомобилей ГАЗ, ЗИЛ, МАЗ при ремонте их в условиях автотранспортных предприятий. Основные технические данные и ха ...

Навигация

Copyright © 2024 - All Rights Reserved - www.transportgood.ru